Journal Clean WAS (JCleanWAS)

SOIL TILLAGE VARIANTS AND SULPHUR FERTILIZATION AFFECT NODULATION, N2 FIXATION AND YIELD OF BAMBARA GROUNDNUT (Vigna subterreana) IN SOUTHEAST NIGERIA

September 27, 2023 Posted by Natasha In Uncategorized

ABSTRACT

SOIL TILLAGE VARIANTS AND SULPHUR FERTILIZATION AFFECT NODULATION, N2 FIXATION AND YIELD OF BAMBARA GROUNDNUT (Vigna subterreana) IN SOUTHEAST NIGERIA

Journal: Journal CleanWAS (JCleanWAS)

Author: M.A.N. Anikwe., Nnamnani D.E., Ikengannyia E.E., J.C. Eze., Obidike-Ugwu, E. O

This is an open access article distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Doi: 10.26480/jcleanwas.02.2023.76.82

Management efficiency can increase crop productivity through enhanced N2 fixation in the plant-soil system. This study examined soil tillage variants and sulphur fertilization effects on nodulation, N2 fixation effectiveness and yield of Bambara groundnut [Vigna subterranea] in a degraded Ultisol in Agbani Enugu, Southeast Nigeria. Twenty-four experimental units were laid out in a Randomized Complete Block Design (RCBD). The six treatments comprised No-Till+No Gypsum (NTGo), No-Till+Gypsum1 (NTG1), No-Till+Gypsum2 (NTG2), Till+No Gypsum (TGo), Till+Gypsum1 (TG1), and Till+Gypsum2 (TG2). No-till+gypsum2 plots had significantly higher soil N content than each corresponding No-till+no gypsum plot by 15-40 %. At 30 DAP, the plots treated with till+gypsum1 (21 kg/ha), till+gypsum2 (42 kg/ha), no-till+gypsum2 (42 kg/ha), no-till+gypsum1 (21 kg/ha), and till+no gypsum had 62-63 % higher soil sulphur content (P= 0.05) than the control plots. The nodule count per plant in plots treated with no-till+gypsum2 (42 kg/ha) was greater than that in the control plot, plots with no-till+gypsum1 (21 kg/ha), and plots with till+gypsum2 (42 kg/ha) by 72-74 % at 30, 60, and 90 DAP across two seasons. Compared to the untreated plots, nodulation effectivity was raised by 79-89 % in the No-till+gypsum2 plot. The plots treated with no-till+gypsum2 (42 kg/ha) had the highest yield (0.94 t/ha), followed by plots treated with no-till+gypsum1 (42 kg/ha) with 0.93 t/ha dry seed yield and till+gypsum2 (42 kg/ha) with 54-55 % greater yield (P=0.05) than the control plot. Sulphur treatment boosted nodulation by 68 % and nodule effectiveness by about 78 %. The no-till+Gypsum2 application enhanced the average yield of Bambara groundnuts by 56 %. The soil application of S enhanced the amount of accessible S in the soil. Results show that the tillage system and S fertilization impact Bambara groundnut on degraded Ultisols. Dry matter yield was best with a high S supply in both S increments and no-till systems. The number and effectiveness of nodules increased at different S rates and no-tillage. Because of the increased S application rate, there was a considerable increase in N accumulation due to a greater N2 fixation rate. The study recommends using no-till systems and sulphur fertilization practices to enhance crop productivity, especially in degraded Ultisols. The study provides valuable insights into sustainable agriculture practices that boost yields while conserving soils.

Pages 76-82
Year 2023
Issue 2
Volume 7

Download